If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x-9^2=(2x+2)(2x+29)
We move all terms to the left:
3x-9^2-((2x+2)(2x+29))=0
We add all the numbers together, and all the variables
3x-((2x+2)(2x+29))-81=0
We multiply parentheses ..
-((+4x^2+58x+4x+58))+3x-81=0
We calculate terms in parentheses: -((+4x^2+58x+4x+58)), so:We add all the numbers together, and all the variables
(+4x^2+58x+4x+58)
We get rid of parentheses
4x^2+58x+4x+58
We add all the numbers together, and all the variables
4x^2+62x+58
Back to the equation:
-(4x^2+62x+58)
3x-(4x^2+62x+58)-81=0
We get rid of parentheses
-4x^2+3x-62x-58-81=0
We add all the numbers together, and all the variables
-4x^2-59x-139=0
a = -4; b = -59; c = -139;
Δ = b2-4ac
Δ = -592-4·(-4)·(-139)
Δ = 1257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-\sqrt{1257}}{2*-4}=\frac{59-\sqrt{1257}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+\sqrt{1257}}{2*-4}=\frac{59+\sqrt{1257}}{-8} $
| x-28.5=-12 | | x-2.5=-12 | | 9.6=x-2.3 | | (X+7/16)=(5/8)+(x-9/9) | | -.8x+9x-10x^2=0 | | 12+x=-11 | | 1x/4+1=3 | | 6x-10+x=180 | | 7(g-8)=70 | | x-185=5 | | −0.5(x−4)=1.5 | | 3(x+8)-4=26 | | 0.5x-8=4 | | -30-x=4 | | 3|x+8|-4=26 | | f5+33=-17 | | r–5+ –26=–22 | | 2(2x-1)=6(x=2) | | 2b+5=20−b | | (X/2)+(x+30)=180 | | 6-3x=5x-10x+10. | | 3x-8=13 | | -3/2+11/5x=147/10 | | 41/3=7/2x+2 | | S=18(w)+38 | | y=180-(140-34) | | j/12+7=−12 | | -8x+4=-23 | | c-12=-39 | | 1x+-2=-1 | | 7-x=13+x | | x+1+2x-34=180 |